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1 Introduction
This technical appendix contains three pieces:

1. A table of mathematical notation.

2. Full proofs of all results stated in the main paper.

3. Additional details on the user study.

We also repeat some information (e.g. problem setup) from the main paper for improved readability.

2 Table of notation

Symbol Meaning
H Human/Scientist
A AI agent
E Environment
N The number of x-values
X Set of all possible x-values {1, . . . , N}
jt x-value chosen at timestep t
yt y-value received at timestep t
I The number of timesteps after which the human is periodically asked to provide feedback
fl(i) lower bound function
f̂(i) estimated function
fh(i) upper bound function
Si,t,C The set of y-values collected by algorithm C associated with x-value i at timestep t (some-

times t and/or C are left off for convenience)
St,C The vector of all Si,t,C at timestep t for algorithm C (sometimes C is left off for conve-

nience).
K̂t The latest set of keypoints A had received fromH by timestep t. Keypoints are user-selected

x-values.
K The true set of keypoints, which is unknown to bothH and A initially
ni The unknown maximum number of times we need to sample an x-value to determine whether

it is a keypoint (see asssumption 1)
ζ (K,St) The score function that measures how well we have sampled keypoints (want to maximize,

pronounced “zeta”)
C (x) A function returning the size of a confidence interval (takes in number of samples)
ε The smoothing term used to prevent divide-by-zero in C
δ The confidence level used in C
d (St)

∑
i∈K C (|Si,t|)

z (Lemma 2) A constant
w, tw, iw (Lemma 3) A y-value, the timestep it was collected, and its associated x-value
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q, tq , iq (Lemma 3) A y-value, the timestep it was collected, and its associated x-value
A The theoretically optimal AI algorithm, see Theorem 1.
H (Theorem 1) a set containing all i ∈ X such that |Si,T,B | > |Si,T,A|
L (Theorem 1) a set containing all i ∈ X such that |Si,T,B | ≤ |Si,T,A|
ti (Theorem 1) For every i in H , ti denotes the timestep such that |Si,ti,B | = |Si,T,A|. For every i′ in L, ti′

denotes the timestep where |Si′,T,B | = |Si′,ti′ ,A|
ηi (Theorem 1) a set of all samples y ∈ Si,T,B where y was collected at some t′ > ti for i ∈ H (for all

i /∈ H , let ηi = ∅)
η (Theorem 1) ∪i∈H ηi
Ωi′ (Theorem 1) a set of all y ∈ Si′,T,A where y was collected at some t′ > ti′ for i′ ∈ L (for all i /∈ L, let

Ωi = ∅)
Ω (Theorem 1) ∪i∈L Ωi
m(y) Theorem 1) A bijective function mapping from Ω to η
V ′C(y) (Theorem 1) the increase in the function d (see equation (3)) after collecting sample y using an algorithm

C
iy the x-value corresponding to the y-value y.
ty the timesteps we received the y-value y.
r′D (t) A typical notion of policy regret for algorithm D at timestep t, defined in equation (50). We

do not use this notion.
A (St−1,D) The sample algorithm A would have received if it was initialized at St−1,D
rD (t) Our notion of regret for algorithm D at timestep t, defined in equation (52). Sometimes the

subscript is left off for convenience.
εg (Corollary 1) The probability the algorithm proposed in Corollary 1 selects a non-keypoint.
` (Theorem 3) A number of samples used in the statement of Theorem 3.
δ′ (Theorem 3) A fixed probability greater than 0.
Kn (Theorem 3) A subset of K such that for all i ∈ Kn, P (|Si,T,D| ≥ `′) < 1− δ′ as T →∞ for some `′

Kp (Theorem 3) K −Kn

t′ (Theorem 3) the first timestep such that |Si,t′,D| > `′ for all i ∈ Kp

τ (Theorem 3) the set containing all T ′ such that the chosen x-value jT ′,D ∈ Kp and T ′ > t′

ζmin (Theorem 3) A constant defined in equation (79).
ic (Corollary 2) The first keypoint.
`c (Corollary 2) The number of samples of x-value ic after which it is revealed as a keypoint byH.
nmax maxi∈K ni
εp TESA parameter specifying non-keypoint sample probability.
b0 TESA parameters specifying prior Pareto scale.
a TESA parameter specifying prior Pareto shape.
K̂ TESA variable keeping track of the most recent keypoints.
bi TESA variable storing estimate of when each keypoint would have been added.
xm TESA variable storing the posterior Pareto scale.
h TESA variable storing the sample from the Pareto distribution (estimate of nmax).
ik TESA variable storing the least-sampled current keypoint.
ih TESA variable storing the least-sampled x value.
r TESA variable storing a random floating point number.
ic TESA variable holding the current x-value choice.
Xp (Theorem 4) the set of all i ∈ X such that |Si,t| → ∞ as t→∞.
Xn (Theorem 4) X −Xp.
δ′ (Theorem 4) fixed probability greater than 0.
`′ (Theorem 4) fixed bound on number of samples.
t′′ (Theorem 4) sufficiently large timestep such that |Si,t′′,C | ≤ `′ for all i ∈ Xn but, for all i ∈ Xp,

|Si,t′′,C | > `′.
δ′′ (Theorem 4) arbitrary chosen probability.
t′ (Theorem 4) a sufficiently large timestep such that |Si,t′−1| > ni for all i ∈ X with probability 1− δ′′
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3 Problem Setup
We consider problems in which a human H and an AI A work together to gather the most scientifically useful data
from an environment E (which maps x values to (noisy) y values). At each time step t ≥ 0,A selects an x value jt ∈ X ,
where X is represented as the set of integer values {1, . . . , N}, receives a sampled y value yt ∈ [0, 1] from E , and
adds it to a set of samples Sjt . H is asked to provide feedback every I time steps. Specifically, when t mod I = 0,
A will generate a visualization tuple (fh, fl, f̂), where fh : X → [0, 1] is a higher bound function, fl : X → [0, 1]

is a lower bound function and f̂ : X → [0, 1] is an estimated function, which are estimated using the sample sets Si
(for all i ∈ X ).1 After observing the visualized tuple (fh, fl, f̂), H sends A a set of keypoints K̂t ⊆ X (these are
intended to represent scientifically interesting x-values of the curve, and the set will ideally grow as more information
is uncovered about the true curve).

LetK be the true set of keypoints, which is unknown to bothH andA initially. We make the following assumption:

Assumption 1. There exists some unknown ni such that if |Si,t| ≥ ni then i ∈ K̂t if and only if i ∈ K.

Note that Assumption 1 is not particularly strong, as it only requires H to make correct decisions in a long-term
sense (i.e. if |Si,t| ≥ ni). With smaller numbers of samples, H could make mistakes, for instance marking something
a keypoint when it is not or deleting a true keypoint.

The goal of A is to optimize the following score (zeta):

ζ (K,St) =
|K|∑

i∈K C (|Si,t|)
−
∑
i/∈K

|Si,t| (1)

where St is the vector of sample set sizes for all x values at timestep t: 〈|S1,t|, . . . , |SN,t|〉, and

C (x) =

√
ln
(

2
δ

)
2x+ ε

(2)

represents the confidence interval, ε > 0 represents a (generally small) smoothing term, and 1 − δ represents the
confidence level given δ ∈ (0, 1]. This is similar to the Chernoff-Hoeffding bounds, except for the addition of ε in the
denominator to prevent divide-by-zero issues.2

The motivation for equation (1) is that we want more identified keypoints (hence the |K| numerator), but we
also want to be certain of the value of each keypoint (hence the sum of keypoint confidence interval sizes in the
denominator). Also, we want to minimize the number of samples devoted to places that are not scientifically interesting,
hence the term which subtracts the number of non-keypoint samples.

4 Defining Regret
Since our problem involves running AI systems online in an unknown environment, theoretical guarantees (such as
showing that an algorithm is zero-regret) are particularly important. Here we provide full proofs of the results stated
in the main text.

4.1 Properties of the score function ζ

Here we show some properties of the score function ζ that will be useful for later results. First, we define a function d:

d (St) =
∑
i∈K

C (|Si,t|) (3)

In other words, d is the denominator of the first term of ζ.

Lemma 1. d is monotonically decreasing with t, and ζ(K,St) is monotonically increasing on t such that jt ∈ K.

1In our experiments f̂(i) =
∑

y∈Si
y

|Si|
, fl(i) = f̂(i)− C(|Si|), and fh(i) = f̂(i) + C(|Si|), where C is as defined in equation (2).

2We let δ = 0.1 and ε = 0.02 in our experiments. Also, if K = ∅, we simply let ζ (K,St) = 0 to avoid divide-by-zero issues.
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Proof. At timestep t, yt is added to Sjt,t. Since jt ∈ K, this must change the output of d. Analyzing the partial
derivative of d with respect to |Sjt,t| gives us:

∂d

∂|Sjt,t|
= −

√
ln

(
2

δ

)(
1

2|Sjt,t|+ ε

)1.5

(4)

which means that dmonotonically decreases if an element is added to Sjt,t. Now, ζ (K,St) = |K|
d(St)−

∑
i/∈K |Si,t|.

The last term remains constant on t such that jt ∈ K. So if d monotonically decreases as samples are added, then ζ
must monotonically increase on t such that jt ∈ K.

Additionally, we show that the confidence interval function is decreasing and convex, that is, it shrinks less the
more samples are gathered:

Lemma 2. C(x) is monotonically decreasing and convex for all x ≥ 0.

Proof. Let z =
√

ln
(

2
δ

)
. Note that since 0 < δ ≤ 1, z > 0. Consider the first and second derivatives of the confidence

interval function C(x):
dC
dx = −z (2x+ ε)

−1.5 so C is monotonically decreasing.
d2C
dx2 = 3z (2x+ ε)

−2.5 so C is convex.

In the next lemma we show that there are diminishing returns, that is, if we choose a keypoint, the denominator
shrinks less if there are more samples:

Lemma 3. A sample w ∈ [0, 1], was collected at timestep tw at x-value iw ∈ K, and similarly, a sample q ∈ [0, 1],
was collected at timestep tq at x-value iq ∈ K. Then for any two (possibly equal) algorithms A and B it must be that,
if |Siw,tw,A| ≤ |Siq,tq,B |, then

d(Stw,A)− d(Stw−1,A) ≤ d(Stq,B)− d(Stq−1,B)

Proof. By Lemma 2 C is convex and decreasing. If a function f(x) is convex and decreasing and x0 < x1 then it
must be that f (x0 + 1)− f (x0) ≤ f (x1 + 1)− f (x1), so:

C (|Siw,tw,A|)− C (|Siw,tw,A| − 1) ≤C
(
|Siq,tq,B |

)
− C

(
|Siq,tq,B | − 1

)
(5)

C (|Siw,tw,A|)− C (|Siw,tw−1,A|) ≤C
(
|Siq,tq,B |

)
− C

(
|Siq,tq−1,B |

)
(6)

C (|Siw,tw,A|)− C (|Siw,tw−1,A|) +

 ∑
j∈K,j 6=iw

C (|Sj,tw,A|)−
∑

j∈K,j 6=iw

C (|Sj,tw,A|)


≤ C

(
|Siq,tq,B |

)
− C

(
|Siq,tq−1,B |

)
+

 ∑
j∈K,j 6=iq

C
(
|Sj,tq−1,B |

)
−

∑
j∈K,j 6=iq

C
(
|Sj,tq−1,B |

) (7)

Examining the left hand side of equation (7) gives us:

C (|Siw,tw,A|) +
∑

j∈K,j 6=iw

C (|Sj,tw,A|)− C (|Siw,tw−1,A|)−
∑

j∈K,j 6=iw

C (|Sj,tw,A|)

=
∑
i∈K

C (|Si,tw,A|)−
∑
i∈K

C (|Si,tw−1,A|) (8)
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Since the only sample set that changed size from tw − 1 to tw in algorithm A was Siw,tw,A. Similarly, examining
the right hand side of equation (7) gives us:

C
(
|Siq,tq,B |

)
+

∑
j∈K,j 6=iq

C
(
|Sj,tq−1,B |

)
− C

(
|iq, Stq−1,B |

)
−

∑
j∈K,j 6=iq

C
(
|Sj,tq−1,B |

)
=
∑
i∈K

C
(
|Si,tq,B |

)
−
∑
i∈K

C
(
|i, Stq−1,B |

)
(9)

Combining equations (7), (8) and (9) gives us:∑
i∈K

C (|Si,tw,A|)−
∑
i∈K

C (|Si,tw−1,A|) ≤
∑
i∈K

C
(
|Si,tq,B |

)
−
∑
i∈K

C
(
|Si,tq−1,B |

)
(10)

By the definition of d:

d (Stw,A)− d
(
Stw−1,A

)
≤ d

(
Stq,B

)
− d

(
Stq−1,B

)
(11)

4.2 Comparing Regret Definitions
Analyzing performance based on ζ itself is challenging, since the maximum achievable score depends on E and H.
Therefore, we analyze regret compared to an optimal algorithm. In this setting the optimal algorithm is not immediately
obvious, so we introduce Theorem 1.

Theorem 1. Let A be an algorithm which selects the x value argmini∈K |Si|. A is optimal according to the ζ score.

Proof. If |K| = 0 all algorithms have a ζ score of 0, so here we consider cases where |K| > 0.
For a contradiction assume there is some algorithm B and timestep T such that ζ (K,ST,B) > ζ (K,ST,A)3

Let H ⊆ X be a set containing all i ∈ X such that |Si,T,B | > |Si,T,A|.
Let L ⊆ X be a set containing all i ∈ X such that |Si,T,B | ≤ |Si,T,A|.
For every x-value i in H there exists some ti < T such that

|Si,ti,B | = |Si,T,A| (12)

Let ηi be a set of all samples y ∈ Si,T,B where y was collected at some t′ > ti for some i ∈ H (for all i /∈ H , let
ηi = ∅). Then we can express the final set Si,T,B in terms of ηi and the earlier set Si,ti,B as follows:

Si,ti,B ∪ ηi = Si,T,B (13)

So we can write the cardinality as follows:

|Si,ti,B |+ |ηi| = |Si,T,B | (14)

Using equation (12),

|Si,T,A|+ |ηi| =|Si,T,B | (15)
|ηi| =|Si,T,B | − |Si,T,A| (16)

Let η = ∪i∈H ηi. Then |η| =
∑
i∈H |ηi|, so:

|η| =
∑
i∈H
|Si,T,B | − |Si,T,A| (17)

3Note that in reality B might be stochastic, either directly or in the sense that the values of the samples might be stochastic. However, we here
show that no algorithm will ever be able to allocate samples in a way that achieves better ζ score than A, which clearly implies that a stochastic
algorithm cannot achieve better expected ζ score than A.
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Likewise,for every x-value i′ in L there exists some ti′ where |Si′,T,B | = |Si′,ti′ ,A|. Letting Ωi′ be a set of all
y ∈ Si′,T,A where y was collected at some t′ > ti′ for some i′inL (for all i′ /∈ L, let Ωi = ∅). Using a similar
argument to equations (12) - (16) above gives us:

|Ωi′ | = |Si′,T,A| − |Si′,T,B | (18)

Let Ω = ∪i∈L Ωi. Then |Ω| =
∑
i∈L |Ωi|, so:

|Ω| =
∑
i∈L
|Si,T,A| − |Si,T,B | (19)

Since both algorithms A and B have sampled T times by timestep T :∑
i∈X
|Si,T,A| =

∑
i∈X
|Si,T,B | = T (20)

Now, since L and H partition X , it must be that∑
i∈X
|Si,T,A| =

∑
i∈L
|Si,T,A|+

∑
i∈H
|Si,T,A| (21)

and ∑
i∈X
|Si,T,B | =

∑
i∈L
|Si,T,B |+

∑
i∈H
|Si,T,B | (22)

Combining equations (20), (21), and (22) gives us:

∑
i∈L
|Si,T,A|+

∑
i∈H
|Si,T,A| =

∑
i∈L
|Si,T,B |+

∑
i∈H
|Si,T,B | =T (23)∑

i∈L
|Si,T,B |+

∑
i∈H
|Si,T,B | −

∑
i∈L
|Si,T,A| −

∑
i∈H
|Si,T,A| =0 (24)∑

i∈L
|Si,T,B | − |Si,T,A|+

∑
i∈H
|Si,T,B | − |Si,T,A| =0 (25)∑

i∈H
|Si,T,B | − |Si,T,A| =

∑
i∈L
|Si,T,A| − |Si,T,B | (26)

Combining equation (26) with equation (17) and equation (19) we get:

|η| = |Ω|

Since η and Ω are the same size, there exist many possible bijective functions mapping from Ω to η. Consider one
such bijective function m : Ω→ η.

Let the function V ′C be defined as the increase in the function d (see equation (3)) after collecting sample y using
an algorithm C, in other words define V ′C as follows:

V ′C (y) = d
(
Sty,C

)
− d

(
Sty−1,C

)
(27)

where ty denotes the timestep just after y was collected (in other words, Sty,C is the set which includes y as a
sample, while Sty−1,C does not).

Our next step is to show V ′B (m (y)) ≥ V ′A (y) for all y ∈ Ω. To do so, consider 2 cases:
Case 1: im(y′) /∈ K Case 2: im(y′) ∈ K
where im(y′) ∈ X denote the x-value corresponding to the sample m (y′).

Case 1: im(y′) /∈ K
Since no samples were collected for any i ∈ K at timestep t, Si,ty′ ,B = Si,ty′−1,B for all i ∈ K, and thus
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d
(
St′y,B

)
= d

(
Sty′−1,B

)
(28)

so V ′B (m (y′)) = 0.
Now, A always picks some i ∈ K, so iy′ ∈ K and thus d will change. By Lemma 1, d monotonically decreases as

additional samples are collected, and thus V ′A (y′) ≤ 0. Since V ′B (m (y′)) = 0:

V ′A (y′) ≤ V ′B (m (y′)) (29)

Case 2: m (y′) ∈ K
SinceA selects argmini∈K |Si|,Awill never add more than 1 more sample to any x-value j compared to any other

x-value j′. So it must be that:

⌊
T

|K|

⌋
≤ |Sj,T,A| ≤

⌈
T

|K|

⌉
for all j ∈ X (30)

|Siy′ ,T,A| ≤
⌈
T

|K|

⌉
(31)

|Siy′ ,ty′ ,A| ≤
⌈
T

|K|

⌉
(32)

Now, since m (y′) ∈ η, it must be that im(y′) ∈ H by definition of η. So
|Sim(y′),T,A

| < |Sim(y′),tm(y′),B
| by definition of H . Combining this with equation (30), we have:

⌊
T

|K|

⌋
<|Sim(y′),tm(y′),B

| (33)⌈
T

|K|

⌉
≤|Sim(y′),tm(y′),B

| (34)

Combining this with equation (32) gives us:

|Siy′ ,ty′ ,A| ≤
⌈
T

|K|

⌉
≤|Sim(y′),tm(y′),B

| (35)

|Siy′ ,ty′ ,A| ≤|Sim(y′),tm(y′),B
| (36)

Using Equation (36), we can invoke Lemma 3, which gives us:

d
(
Sty′ ,A

)
− d

(
Sty′−1,A

)
≤ d

(
Stm(y′),B

)
− d

(
Stm(y′)−1,B

)
(37)

By the definition of V ′:

V ′A (y′) ≤ V ′B (m (y′)) (38)

So by equations (29) and (38), V ′A (y′) ≤ V ′B (m (y′)) for all y′ ∈ Ω regardless of which case we are in. Since m
is a bijection, this gives us that: ∑

o′∈Ω

V ′A (o′) ≤
∑
j′∈η

V ′B (j′) (39)

Now, recall Ωi contains all samples collected for x-value i by A after exceeding the corresponding number of
samples for i in B, and ηi contains all samples collected for x-value i by B after exceeding the number of samples for
i in A. So for each i, it must be the case that

|Si,T,A − Ωi| = |Si,T,B − ηi| for all i ∈ X (40)

Given equation (40) and the fact that V ′ depends only on the number of samples at each x-value at the time a
sample was collected, it must be that that samples aside from those in Ω and η have equal total V ′. In other words:
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∑
o′∈SA,T−Ω

V ′A (o′) =
∑

j′∈SB,T−η

V ′B (j′) (41)

Combining equations (39) and (41) gives us:∑
y′∈SA,T−Ω

V ′A (y′) +
∑
o′∈Ω

V ′A (o′) ≤
∑

j′∈SB,T−η

V ′B (j′) +
∑
j′∈η

V ′B (j′) (42)

∑
o′∈SA,T

V ′A (o′) ≤
∑

j′∈SB,T

V ′B (j′) (43)

Recall from equation (27) that V ′A (y) = d
(
Sty ,A

)
− d

(
Sty−1,A

)
. By the fact that

∑
o′∈SA,T

V ′A (o′) is a
telescoping sum, we have that∑

o′∈SA,T

V ′ (o′) = d (ST,A)− d (I) , where I is the initial set vector 〈∅, . . . , ∅〉 (44)

and likewise for B. Combining this with equation (43) we have

d (ST,A)− d (I) ≤ d (ST,B)− d (I) (45)
d (ST,A) ≤ d (ST,B) (46)

1

d (ST,A)
≥ 1

d (ST,B)
(47)

|K|
d (ST,A)

≥ |K|
d (ST,B)

−
∑
i/∈K

|Si,T,B | (48)

By definition of ζ, and the fact that
∑
i/∈K |Si,T,A| = 0:

ζ (K,ST,A) ≥ ζ (K,ST,B) (49)

Therefore B cannot be a better algorithm than A according to the ζ-score.

5 Defining Regret
Given Theorem 1, we wish to define regret of some algorithm D relative to A. Perhaps the most natural definition of
regret would be ζ (K,ST,A)− ζ (K,ST,D). However, since the ζ metric incorporates information from all timesteps
(and not just the current one), this does not quantify how much regret we incur on each timestep t. This can be achieved
by computing the change in score from t− 1 to t for both algorithms:

r′D (t) = [ζ (K,St,A)− ζ (K,St−1,A)]− [ζ (K,St,D)− ζ (K,St−1,D)] (50)

Note that, since our problem setup allows some quantities to be chosen adversarially (for instance, the addition and
removal of keypoints), equation (50) measures regret with respect to the best possible policy in the face of these
adversarial decisions, in other words, it is very similar to policy regret [1]. An alternative is to use a notion closer the
external regret [2]:

rD (t) = [ζ (K,St−1,D ∪A (St−1,D))− ζ (K,St−1,D)]− [ζ (K,St,D)− ζ (K,St−1,D)] (51)
rD (t) = [ζ (K,St−1,D ∪A (St−1,D))− ζ (K,St,D)] (52)

where A (St−1,D) denotes the sample algorithm A would have received if it was initialized at St−1,D.4

In other settings, policy regret (i.e. Equation (50)) is thought to be strictly stronger than external regret (i.e. Equa-
tion (52)) [1]. Therefore, in most adversarial settings, regret guarantees with respect to the policy regret would be

4ζ does not depend on y-values, so one can look at the x-value A would select given St−1,D and increment the size of that set.
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preferred to guarantees related to the external regret. But in this situation, policy regret is actually weaker in some
sense than external regret. This unusual property arises from the fact that, as long as an algorithm (asymptotically)
samples only keypoints, the increase in the ζ score will go to zero due to the fact that the confidence intervals shrink
towards zero. So an algorithm could conceivably be zero-regret (in a policy regret sense) if it simply found (and end-
lessly sampled) one keypoint while ignoring all others. In contrast, this algorithm would not be zero-regret under an
external regret definition (as we show formally in Theorem 3 and Corollary 2) since A would choose one of the low-
sampled keypoints, and thus it would always be able to increase ζ by much more than the single-keypoint algorithm.
Therefore, we adopt the external regret definition of Equation (52) in the rest of this paper.

We define a zero-regret algorithm as follows:
An algorithm B is zero-regret if and only if limT→∞E [rB (T )] = 0
This problem setup is unusual: The typical bandit-style assumption is that the algorithm observes the reward/loss

it receives after making its decision, and simply needs to keep that reward high enough relative to the optimal reward.
In our case, however, the algorithm does not know the true keypoints, and yet regret is evaluated with respect to the
true set of keypoints K. Therefore the true reward for each action is unobserved, making the problem more difficult.

5.1 Properties of zero-regret algorithms
To further illuminate this problem, we lay out some necessary properties of zero-regret algorithms. First, in Theorem 2
we show that an algorithm is zero-regret only if the proportion of samples assigned to non-keypoints converges to
zero.

Theorem 2. If |K| > 0, limT→∞E [rB (T )] = 0 only if:

lim
T→∞

E

[∑
i/∈K |Si,T,B |∑
i∈X |Si,T,B |

]
= 0

Proof. For a contradiction, assume there exists some algorithm D such that

lim
T→∞

E [rD (T ) = 0] , but also lim
T→∞

E

[∑
i/∈K |ST,i,D|∑
i∈X |ST,i,D|

]
6= 0 (53)

Consider the regret on each t′ where jt′ /∈ K. From equation (51) we have:

rD (t′) = [ζ (K,St′−1,D ∪A (St′−1,D))− ζ (K,St′−1,D)]− [ζ (K,St′,D)− ζ (K,St′−1,D)] (54)

By Lemma 1 ζ will increase (or stay the same) after adding the sample chosen by A, since A always selects
keypoints. Therefore:

[ζ (K,St′−1,D ∪A (St′−1,D))− ζ (K,St′−1,D)] ≥ 0 (55)

Now, we know that on t′, algorithm D selected a jt /∈ K. Therefore, we have:

ζ (K,St′,D)− ζ (K,St′−1,D)

=
|K|∑

i∈K C (|Si,t′,D|)
−
∑
i/∈K

|Si,t′,D| −
|K|∑

i∈K C (|Si,t′−1,D|)
−
∑
i/∈K

|Si,t′−1,D| (56)

= −
∑
i/∈K

|Si,t′,D|+
∑
i/∈K

|Si,t′−1,D| (57)

= |Sjt′ ,t′−1,D| − |Sjt′ ,t′,D| (58)
= −1 (59)

Combining equations (55) and (59) into (54) gives us:

rD (t′) ≥ 0− (−1) = 1 (60)
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So the regret on each t′ where jt′ /∈ K must be at least 1.
Now, if E

[∑
i/∈K |ST,i,D|∑
i∈X |ST,i,D|

]
= qT , then E [rD (T )] ≥ TqT , since each non-keypoint sample incurs at least 1 regret.

And since limT→∞ qT 6= 0, E [rD (T )] likewise cannot go to zero.

Corollary 1. If |K| > 0, an algorithm which samples keypoints with probability (1− εg) and non-keypoints (if there
exist any) with probability εg cannot be zero regret.

Proof. This follows immediately from Theorem 2, as if we assign probability εg to non-keypoints,

limT→∞E
[∑

i/∈K |Si,T,B |∑
i∈X |Si,T,B |

]
= εg .

Theorem 3. An algorithm B is zero-regret only if, for any number `, for all i ∈ K, limT→∞P (|Si,T,B | ≥ `) = 1 .

Proof. If |K| = 0, the condition trivially holds, so we consider |K| > 0. For a contradiction, assume there exists an
algorithm D such that limT→∞E [rD (T )] = 0 but for all i ∈ Kn ⊆ K, P (|Si,T,D| ≥ `′) < 1 − δ′ as T → ∞ for
some `′, where |Kn| > 0 and δ′ is a fixed probability greater than 0. Consider cases where

|Si,T,D| < `′ for all i ∈ Kn as T →∞, (61)

which must happen with probability at least δ′. Note that if D incurs at least expected regret r for some r > 0 in these
cases, it’s overall expected regret will be at least rδ′, so D must be zero-regret in these cases as well.

First, if Kn = K, limT→∞E
[∑

i/∈K |ST,i,D|∑
i∈X |ST,i,D|

]
= 1 (since A cannot continue sampling keypoints infinitely many

times, it must shift an ever-increasing proportion of samples to non-keypoints). In this case, Theorem 2 tells us that
D cannot be zero-regret. So it must be the case that Kn is a strict subset of K, and there exists some non-empty set
Kp = K − Kn of keypoints where for all i ∈ Kp, |Si,T,D| → ∞ as T → ∞. In order to fulfill the condition in
Theorem 2 (and given that Kn cannot be sampled infinitely many times) it must also be the case that

limT→∞E

[∑
i∈X−Kp

|ST,i,D|∑
i∈X |ST,i,D|

]
= 0, or conversely:

lim
T→∞

E

[∑
i∈Kp

|ST,i,D|∑
i∈X |ST,i,D|

]
= 1 (62)

SinceD samples all i ∈ Kp infinitely many times as T →∞, let t′ be a random variable denoting the first timestep
such that

|Si,t′,D| > `′ for all i ∈ Kp (63)

Now, consider the set of timesteps τ which contains all T ′ such that the chosen x-value jT ′,D ∈ Kp and T ′ > t′.
By equation (61) it must be the case that:

|Si,T ′,D| < `′ for all i ∈ Kn and all T ′ ∈ τ (64)

Now combining equations (63) and (64) gives us:

|Sip,T ′,D| > |Sin,T ′,D| for all ip ∈ Kp, in ∈ Kn and all T ′ ∈ τ (65)

Now, since |Sip,T ′,D| → ∞ for all ip ∈ Kp, it must be true that, for all ip ∈ Kp:

lim
T ′→∞

√
ln
(

2
δ

)
2|Sip,T ′,D|+ ε

= 0 (66)

lim
T ′→∞

C(|Sip,T ′,D|) = 0 (67)

lim
T ′→∞

C(|Sip,T ′,D|)− C(|Sip,T ′−1,D|) = 0 for all ip ∈ Kp (68)

Now, observe that, since jT ′,D ∈ Kp,

C(|Sin,T ′,D|) = C(|Sin,T ′−1,D|) for all in ∈ Kn (69)
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Combining equations (68) and (69) gives us

lim
T ′→∞

∑
ip∈Kp

C(|Sip,T ′,D|)− C(|Sip,T ′−1,D|) +
∑
in∈Kn

C(|Sin,T ′,D|)− C(|Sin,T ′−1,D|) = 0 (70)

lim
T ′→∞

∑
i∈K

C(|Si,T ′,D|)−
∑
i∈K

C(|Si,T ′−1,D|) = 0 (71)

lim
T ′→∞

d(ST′,D)− d(ST′−1,D) = 0 (72)

Note that while the difference in equation (72) goes to zero, d(ST′,D) itself does not go to zero, since for each
i ∈ Kn, C(|Sin,T ′,D|) ≥

∑
in∈Kn

C(`′) by Lemma 2 and equation (61). Therefore:

lim
T ′→∞

|K|
d(ST′,D)

− |K|
d(ST′−1,D)

= 0 (73)

lim
T ′→∞

ζ(K,ST′,D)− ζ(K,ST′−1,D) = 0 (74)

Where the last line follows since jT ′,D ∈ K for all T ′ ∈ τ .
Let iA,T ′ = iA(ST ′−1,D) be the x-value A would choose given the set ST ′−1,D. A selects argmini∈K |Si| by

definition, so by equation (65), iA ∈ Kn and thus by equation (61):

|SiA,T ′,D| ≤ `′ (75)

Now examine the difference in ζ before and after adding the sample from A. Since A always selects keypoints we
have:

ζ (K,ST′−1 ∪A (ST′−1))− ζ (K,ST′−1)

=
|K|

C(|SiA,T ′−1|+ 1) +
∑
i∈K,i6=iA C(|Si,T ′−1|)

− |K|
C(|SiA,T ′−1|) +

∑
i∈K,i6=iA C(|SiA,T ′−1|)

(76)

We wish to lower bound this difference. Since |K|x is convex and decreasing if x > 0, to minimize the difference
we make |K|x as large as possible, which means making the denominator x as small as possible. Since the function C
is always non-negative:

ζ (K,ST′−1 ∪A (ST′−1))− ζ (K,ST′−1) ≥ |K|
C(|SiA,T ′−1|+ 1)

− |K|
C(|SiA,T ′−1|)

(77)

≥ |X |
C(|SiA,T ′−1|+ 1)

− |X |
C(|SiA,T ′−1|)

(78)

Let ζmin = min
x∈[0,`′]

|X |
C(x+ 1)

− |X |
C(x)

(79)

ζmin is a constant, which is always greater than zero since C monotonically decreases (see Lemma 2). Now,
combining equations (79) and (78):

ζ (K,ST′−1 ∪A (ST′−1))− ζ (K,ST′−1) ≥ ζmin (80)

By the definition of regret in equation (51) we have:

rD (T ′) ≥ ζmin − ζ(K,ST′,D)− ζ(K,ST′−1,D) (81)

However, recall that this holds only for T ′ ∈ τ . In general, we can write:

E [rD (T )] ≥ P (T ∈ τ) (ζmin − E [ζ(K,ST,D)− ζ(K,ST−1,D)]) (82)

From equation (74), the last two terms go to zero in the limit, giving us:
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lim
T→∞

E [rD (T )] ≥ P (T ∈ τ) (ζmin − 0) (83)

Now, equation (62) (along with the definition of τ ) implies that limT→∞ P (T ∈ τ) = 1. However, note that
equation (62) is derived from equation (61), which holds only with probability δ′. So

lim
T→∞

E [rD (T )] ≥ δ′ζmin (84)

And since ζmin and δ′ are both constants greater than 0, D cannot be zero regret.

Corollary 2. An algorithm which samples round-robin until the first keypoint is found, then samples that keypoint
forever (perhaps reverting to round-robin if that keypoint is deleted), is not zero regret if |K| > 1.

Proof. This follows directly from Theorem 3: if we have H such that the first true keypoint ic is revealed after `c
samples, and not removed thereafter, and for all j ∈ K such that j 6= ic, more than `c + 1 samples are required to
identify it as a keypoint, then
P (|Sj,t| > `c + 1) = 0 for j ∈ K, j 6= ic and all t.

6 A Zero-Regret Bayesian Algorithm
In Algorithm 1 we present our Threshold Estimating Sampling Algorithm (TESA). Although some parts of TESA
are similar to epsilon-greedy, the Bayesian threshold-learning procedure (explained further in the main text) improves
performance. Specifically, although epsilon-greedy is not zero-regret (Corollary 1), TESA is a zero-regret algorithm,
as we show in Theorem 4.
Algorithm 1 Threshold Estimating Sampling Algorithm (TESA)

1: Input: Tradeoff parameter εp ∈ [0, 1), prior scale b0 > 0, prior shape a > 0

2: K̂ ← ∅;∀i∈XSi,0 ← ∅, Si,1 ← ∅
3: for t = 1 to T do
4: if t mod I = 0 then
5: Send (fh, fl, f̂) to humanH, get keypoints K̂t

6: for all i ∈ K̂t − K̂ do
7: bi ← |Si,t|+|Si,t−I |

2

8: K̂ ← K̂t

9: xm ← max
(
b0,maxi∈K̂ bi

)
10: h ∼ Pareto

(
xm, a+ |K̂|

)
11: ik ← argmini∈K̂ |Si,t|
12: ih ← argmini∈X |Si,t|
13: r ∼ Uniform (0, 1)
14: if |K̂| > 0 and (r ≥ εp or |Sih,t| ≥ h) then
15: ic ← ik
16: else
17: ic ← ih
18: Choose x value ic; Receive new sample yt
19: Sic,t+1 ← Sic,t ∪ {yt}
20: ∀i∈X s. t. i 6=icSi,t+1 ← Si,t

Theorem 4. TESA (Algorithm 1) is zero regret.

Proof. For convenience in this proof, when we leave off the algorithm-specific subscripts, it refers to TESA. For
instance, Si,t refers to the set of samples TESA would have for x-value i at timestep t.

First, if K = ∅ then ζ is the same for every algorithm and the theorem is trivial, so we here consider cases where
|K| > 0.
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Let Xp ⊆ X be the set of all i ∈ X such that |Si,t| → ∞ as t→∞. Let Xn = X −Xp. For each i ∈ Xn, it must
be the case that P (|Si,T,C | ≥ `′) < 1 − δ′ as T → ∞ for some `′ and fixed δ′ > 0. Therefore, consider cases where
P (|Si,T,C | < `′) for all i ∈ Xn as T →∞, which happens with fixed probability δ′.

Now, all i ∈ Xp will be sampled infinitely many times, so consider t′′ sufficiently large such that |Si,t′′,C | ≤ `′

for all i ∈ Xn but, for all i ∈ Xp, |Si,t′′,C | > `′. Then, at timesteps t ≥ t′′, consider two (non-exhaustive) cases,
|Xn ∩ K̂t| > 0 and |Xn ∩ K̂t| = 0, |Xn| > 0.

Case 1: |Xn ∩ K̂t| > 0.
In this case consider any j′ such that j′ ∈ Xn and j′ ∈ K̂t. Since K̂t is non-empty, with at least probability

(1− εp) Algorithm 1 will sample a keypoint. Since Algorithm 1 always samples the keypoint with fewest samples, it
will chose j′ (with has at most `′ samples) over any i ∈ Xp (which has more than `′ samples at timestep t ≥ t′′). Since
there is a constant probability (1− εp)) of sampling any x ∈ Xn at timesteps t ≥ t′′, they would eventually have more
than `′ samples almost surely, therefore this case has probability zero.

Case 2: |Xn ∩ K̂t| = 0, |Xn| > 0
The probability that Algorithm 1 will sample non-keypoint is as follows:

P (jt /∈ K̂t) = (P (|K̂t| = 0) + P (r < εp)P (|Sih,t| < h)) (85)
≥ εpP (|Sih,t| < h) (86)

Since Algorithm 1 sets ih to be the non-keypoint with minimum samples, when it chooses a non-keypoint at timstep
t ≥ t′′ it will always choose ih ∈ Xn (as each element of Xn has at most `′ samples) over any i ∈ Xp (which has
more than `′ samples at timestep t ≥ t′′). So

P (jt ∈ Xn) ≥ εpP (|Sih,t| < h) (87)
≥ εpP (`′ < h) = εpP (h > `′) (88)

Note that h is distributed as Pareto
(

max
(
b0,maxi∈K̂t

bi

)
, a+ |K̂t|

)
, which is drawn independently on each

timestep. So by the Pareto complementary CDF and equation (88):

P (jt ∈ Xn) ≥ εp
(xm
`′

)|K̂t|+a
(89)

≥ εp
(

max(b0,maxi∈K̂t
bi)

`′

)|K̂t|+a

(90)

≥ min
a′∈[0,|X |]

εp

(
b0
`′

)a′+a
(91)

The total probability of sampling some i ∈ Xn is lower bounded by a constant per equation (91) at timesteps
t ≥ t′′, therefore the number of samples for at least one i ∈ Xn would eventually become greater than `′ almost
surely. So this case must have probability zero.

Note that Case 1 and Case 2 each have probability zero. The only case not covered by case 1 and 2 is |Xn| = 0, so
P (|Xn| = 0) = 1, meaning

For all x-values i ∈ X , |Si,T,C | → ∞ as T →∞, (92)

Therefore, for any δ′′ there exists a sufficiently large t′ such that |Si,t′−1| > ni for all i ∈ X with probability 1− δ′′.
Now if |Si,t′−1| > ni for all i ∈ X , K̂t = K for all t ≥ t′ − 1 by Assumption 1. Therefore:

For sufficiently large t, K̂t = K under Algorithm1 almost surely (93)

Now the expected ζ-score in this case will be:

E [ζ (K,St)] = E

[
|K|∑

i∈K Ci (|Si,t|)
−
∑
i/∈K

|Si,t|

]
(94)

= E

 |K̂t|∑
i∈K̂t

Ci (|Si,t|)
−
∑
i/∈K̂t

|Si,t|

 (95)
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And since K̂t−1 = K as well, the difference in ζ score between timesteps t− 1 and t is:

E [ζ (K,St)− ζ (K,St−1)]

=E

 |K̂t|
d(K̂t,St)

−
∑
i/∈K̂t

|Si,t| −

 |K̂t|
d(K̂t,St−1)

−
∑
i/∈K̂t

|Si,t−1|

 (96)

=E

[
|K̂t|

d(K̂t,St)
− |K̂t|
d(K̂t,St−1)

]
− E

∑
i/∈K̂t

|Si,t| − |Si,t−1|

 (97)

=E

[(
|K̂t|

d(K̂t,St)
− |K̂t|
d(K̂t,St−1)

)]
− P (jt /∈ K̂t)E [(|Sjt,t−1|+ 1)− |Sjt,t−1|] (98)

=E

[(
|K̂t|

d(K̂t,St)
− |K̂t|
d(K̂t,St−1)

)]
− P (jt /∈ K̂t) (99)

=
(

1− P (jt /∈ K̂t)
)
E

[(
|K̂t|

d(K̂t,St)
− |K̂t|
d(K̂t,St−1)

)∣∣∣∣∣jt ∈ K̂t

]
− P (jt /∈ K̂t) (100)

Where the last line follows since
(
|K̂t|

d(K̂t,St)
− |K̂t|

d(K̂t,St−1)

)
= 0 if P (jt /∈ K̂t).

Now, examine the rightmost term in equation (100):

P (jt /∈ K̂t) =P (|K̂t| = 0) + P (r < εp)P (|Sih,t| < h) (101)
=P (|K| = 0) + εpP (|Sih,t| < h) (102)
=εpP (|Sih,t| < h) (103)

Where the last equation follows since we assumed |K| > 0. Combining equations (103) and (100) gives us:

E [ζ (K,St)− ζ (K,St−1)]

≥ (1− εpP (|Sih,t| < h))E

[(
|K̂t|

d(K̂t,St)
− |K̂t|
d(K̂t,St−1)

)∣∣∣∣∣jt ∈ K̂t

]
− εpP (|Sih,t| < h) (104)

Recall that for any δ′′ there exists a sufficiently large t′ that with probability (1− δ′′) equation (104) holds for all
t ≥ t′, so:

lim
t→∞

E [ζ (K,St)− ζ (K,St−1)]

≥ lim
t→∞

(
(1− εpP (|Sih,t| < h))E

[(
|K̂t|

d(K̂t,St)
− |K̂t|
d(K̂t,St−1)

)∣∣∣∣∣jt ∈ K̂t

])
− lim
t→∞

εpP (|Sih,t| < h) (105)

Now, examine the last term in equation (105). Since h is drawn from a Pareto distribution on each timestep using
the Pareto complementary CDF:

lim
t→∞

εpP (|Sih,t| < h) = lim
t→∞

εp

(
max(b0,maxi∈K̂t

bi)

|Sih,t−1|

)|K̂t|+a

(106)

≤ lim
t→∞

εp

(
max(b0,maxi∈K ni + I

2 )

|Sih,t−1|

)|K̂t|+a

(107)

Where the last line follows since the maximum number of samples it can take to identify that something is (or is
not) a keypoint is maxi∈X ni by Assumption 1, and then we devote at most I more samples to it (with the midpoint
equation on line 7 causing it to be at most I2 off). Now, using the fact in equation (93):
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lim
t→∞

εpP (|Sih,t| < h) ≤ lim
t→∞

εp

(
max(b0,maxi∈K ni + I

2 )

|Sih,t−1|

)|K|+a
(108)

Now, recall that we established in equation (92) that as t → ∞, |Si,t−1| → ∞ for all i. Since the other terms in
equation (108) are constants:

lim
t→∞

εpP (|Sih,t| < h) = 0 (109)

Now, combining equations (105) and (109) gives us that:

lim
t→∞

E [ζ (K,St)− ζ (K,St−1)] ≥ lim
t→∞

(
E

[(
|K̂t|

d(K̂t,St)
− |K̂t|
d(K̂t,St−1)

)∣∣∣∣∣jt ∈ K̂t

])
(110)

Now, combining equation (110) with our definition of regret (equation (51)) gives us:

lim
t→∞

E [r (t)] ≤ lim
t→∞

(
E [ζ (K,St−1 ∪A (St−1))− ζ (K,St−1)]− E

[
|K̂t|

d(K̂t,St)
− |K̂t|
d(K̂t,St−1)

∣∣∣∣∣jt ∈ K̂t

])
(111)

Now examining the left two terms of the above equation gives us:

E [ζ (K,St−1 ∪A (St−1))− ζ (K,St−1)]

= E

 |K̂t|
d(K̂t,St−1 ∪A (St−1))

−
∑
i/∈K̂t

|Si,t| −
|K̂t|

d(K̂t,St−1)
−
∑
i/∈K̂t

|Si,t−1|

 (112)

= E

[
|K̂t|

d(K̂t,St−1 ∪A (St−1))
− |K̂t|
d(K̂t,St−1)

]
(113)

Where the last line follows since A never selects non-keypoints. Combining equations (113) and (111) gives us:

lim
t→∞

E [r (t)]

≤ lim
t→∞

(
E

[
|K̂t|

d(K̂t,St−1 ∪A (St−1))
− |K̂t|
d(K̂t,St−1)

]
− E

[
|K̂t|

d(K̂t,St)
− |K̂t|
d(K̂t,St−1)

∣∣∣∣∣jt ∈ K̂t

])
(114)

Now, A (St−1) = argmini∈K |Si,t−1| by definition. By equation (93), for sufficiently large t, A (St−1) =

argmini∈K̂t
|Si,t−1| almost surely. And if jt ∈ K̂t, Algorithm 1 selects jt = ik = argmini∈K̂t

|Si,t−1|. Therefore,
for sufficiently large t the terms in equation (114) cancel, leaving us with:

lim
t→∞

E [r (t)] ≤ 0 (115)

Therefore, Algorithm 1 is zero regret.

7 User Study Details
Here we provide additional details on the user study - the descriptions of all three environments and the associated
quizzes, the keypoint quizzes and instructions, and screenshots of the more complex parts of the task.

15



7.1 Economics Domain
Economics Description

Avocados are small, green, hand-sized fruits that are growing in popularity around the world and are normally sold
at many supermarkets across the United States.

The retail price of avocados is key to the number of avocados sold. Economic theory states that the higher the
price, the less likely people are to buy something. As an example, imagine you are presented with 2 identical avocados
to purchase, one priced at 1 dollar and the other at 100 dollars. Which would you choose?

With all that being said, economic theory is generally only good in a big picture sense, so in this HIT you will run
an experiment varying the price of Hass Avocados and observing how the number sold changes. You will see a graph
containing the price on the horizontal (x) axis and the number sold on the vertical (y) axis.

Economics Quiz
1. Other things being equal, if the price goes up, what happens to sales?

• A. Sales go down.

• B. Sales stay the same.

• C. Sales go up.

• D. None of the above

2. At which location is a person most likely to find avocados?

• Antarctic Ocean

• Grocery shop

• Library

• Casino

7.2 Cognitive Psychology Domain
Cognitive Psychology Description

Scientists are interested in understanding peoples reaction times via experimentation. Reaction time is a stop-
watch measurement of things like how long it takes a sprinter to start moving after a referee fires a starting pistol. An
experiment is going to be conducted to measure peoples reaction times. The participants in this experiment will be
college students, with varying majors, in Germany. They will have no prior experience with this experiment. In this
experiment, participants will sit in front of a computer screen in a laboratory. They will be shown a series of square
shapes, one square at a time. For each square, the participant will guess the size of the square as quickly as possible.

Scientists hypothesize that how similar in size the current square is to the previous square will affect the participants
reaction time.

Imagine, if you will, viewing a square, and guessing its size. Then, you would view another square of the same
size and guess its size. Maybe it wouldnt take long to guess the familiar size. But if the two square sizes were very
different (for example, a really big and really small square), it might take much longer.

We could visualize the reaction time as a graph. The reaction time would be on the vertical (y) axis, and the
horizontal (x) axis would have the square size difference, ranging from -18mm (meaning the current square is 18mm
smaller than the previous square) to 18 mm (meaning the current square is 18mm bigger than the previous square). In
this HIT, you will play the role of a scientist conducting an experiment to determine the shape of this graph. In general,
psychologists would expect this graph to look almost exactly like a capital letter V (Petzold, P., Haubensak, G., 2004),
with the base of the ”V” at 0mm, but it may or may not be the case here.

Cognitive Psychology Quiz
1. This experiment is designed to test whether reaction time is connected to:

• A. The color of two squares

• B. The participants reaction time
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• C. The size difference between consecutive squares

• D. Internet connection speed

2. Psychologists generally believe the reaction time will be smallest when:

• A. One square is much bigger than the next.

• B. Two consecutive squares are about the same size.

• C. The squares are of two very different sizes

• D. The squares are of the smallest possible size.

7.3 Mental Health Domain
Mental Health Description

Mental illness has become an increasingly large topic of discussion in the modern age, especially within the tech
industry.

Mood disorders are mental illnesses that involve persistent distorted emotional functioning. People with mood
disorders experience emotional states that are inconsistent with their circumstances, for example abnormally strong and
persistent feelings of anxiety, fear, sadness, or depression. In bipolar disorder, people sometimes experience periods
of abnormally elevated mood. The most common mood disorders involve persistent elevated negative emotions such
as depression and anxiety.

The percentage of the population with a mood disorder tends to decrease with age, with the highest rates of mood
disorders occurring among young adults (National Institute of Mental Health, 2017).

In this HIT, you will run an experiment looking deeper at the question of how age (on the horizontal x-axis) affects
the percentage of mood disorder within the tech industry (on the vertical y-axis). Note that individuals within the tech
industry may or may not behave the same way as the general population.

Mental Health Quiz
1. How do mood disorders typically relate to age, according to the National Institute of Mental Health?

• A. Middle aged people suffer from mood disorders at a much higher rate than any other age group.

• B. Younger adults suffer from mood disorders at a much higher rate than any other age group.

• C. Older people suffer from mood disorders at a much higher rate than any other age group.

• D. Younger adults suffer from mood disorders at a much lower rate than any other age group.

2. Which of the following best defines a mood disorder?

• A. A type of mental illness that mostly affects your discussion ability.

• B. Mismatching colors that ruin a vibe.

• C. A type of mental illness that causes people to experience very mild happiness about the tech industry.

• D. A type of mental illness that causes abnormal emotions.

7.4 Understanding Keypoints
Keypoint Description

Recall that you are playing the role of a scientist running an experiment. Collecting data is time intensive and
expensive, so you want to be careful to collect the most useful data possible. To help the system collect better data, in
a later part of the task you will identify scientifically interesting points, called key points, on the graph. These points
will be used to guide data collection.

An scientifically interesting point (key point) is a place on the graph that is unexpected. This is a bit hard to define
precisely as many possible things could be scientifically interesting, but we’ll give an example.
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For a hypothetical example, imagine a graph of temperature that generally shows a 0 degrees Celsius (32 degrees
Fahrenheit) winter. But on December 1st, it was a balmy 23 degrees Celsius (73 degrees Fahrenheit). Then December
1st could be a scientifically interesting point, but it could also be simply the result of a malfunctioning thermometer.
But if you had a lot of data for December 1st agreeing with the high temperature, it would be very interesting.

The data collected so far will be visualized as shown to the right. The dashed purple line indicates the best guess as
to where the data lies, but it could actually be anywhere in the blue area (the blue area essentially represents confidence
intervals). The larger the vertical blue area, the *less* data we have at that x-value.

A key point will be visualized with a star. In a few screens, your task will be to add these keypoints and then
drag and drop them onto the scientifically interesting points of the graph. [Picture of star]

Be careful! You should NOT mark any keypoints if we haven’t collected enough datapoints yet! A very large
blue area means that we don’t have many datapoints at that location, and the total number of datapoints (N) used to
build the graph is usually shown near the bottom.

Keypoint Quizzes
1. Users are shown Figure 1 and asked: Examine the below graph. At which x-value is there the most data?

Figure 1: The figure for the first keypoint question.

• A. 15

• B. 6

• C. -3

• D. -12

2. Users are shown Figure 2 and asked: How many key points should you mark in the graph, below? Recall that key
points are scientifically interesting points at which we have enough data to be somewhat confident in their values.

Figure 2: The figure for the second keypoint question.

• A. I should mark 0 key points.

• B. I should mark 1 key points.

• C. I should mark 2 key points.

• D. I should mark 5 key points.

• E. I should mark 13 key points.
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7.5 Task Screenshots
Figures 3- 5 show screenshots of the more visually complicated parts of the task.

Figure 3: The user interface for the prior specification part of the experiment. Participants draw a curve in freehand,
then make smaller adjustments the curve via vertically dragging points (represented by circles) on the curve.
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Figure 4: Once users have specified their prior curve, they move on to several iterations of our keypoint selection
interface. We visualize the current estimated function (purple dotted line) and confidence region (blue area). Users can
add and delete keypoints as well as drag them to interesting regions of the function.
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Figure 5: Once users have specified several iterations of keypoints, they move on to the final phase. Participants choose
which graph they think did the best job collecting data points in places they deem scientifically interesting. One of
these graphs is generated by UWPS based on the prior curve while the other is generated by TESA. Their position is
randomized and users are not told which is which.
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